3.2.30 \(\int \frac {\sec ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [130]

Optimal. Leaf size=181 \[ -\frac {9 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 \sqrt {a} d}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {7 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}-\frac {\sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {\sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

-9/8*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)+arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*
cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+7/8*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)-1/12*sec(d*x+c)*tan(d*x+c)/d/(a+a
*cos(d*x+c))^(1/2)+1/3*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {2858, 3063, 3064, 2728, 212, 2852} \begin {gather*} \frac {7 \tan (c+d x)}{8 d \sqrt {a \cos (c+d x)+a}}-\frac {9 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 \sqrt {a} d}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {\tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}-\frac {\tan (c+d x) \sec (c+d x)}{12 d \sqrt {a \cos (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(-9*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*Sqrt[a]*d) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c
+ d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + (7*Tan[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) - (
Sec[c + d*x]*Tan[c + d*x])/(12*d*Sqrt[a + a*Cos[c + d*x]]) + (Sec[c + d*x]^2*Tan[c + d*x])/(3*d*Sqrt[a + a*Cos
[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3064

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sec ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {\sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {\int \frac {(a-5 a \cos (c+d x)) \sec ^3(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{6 a}\\ &=-\frac {\sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {\sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {\int \frac {\left (-\frac {21 a^2}{2}+\frac {3}{2} a^2 \cos (c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{12 a^2}\\ &=\frac {7 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}-\frac {\sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {\sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {\int \frac {\left (\frac {27 a^3}{4}-\frac {21}{4} a^3 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{12 a^3}\\ &=\frac {7 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}-\frac {\sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {\sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {9 \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{16 a}+\int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {7 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}-\frac {\sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {\sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {9 \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}-\frac {2 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac {9 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 \sqrt {a} d}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {7 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}-\frac {\sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {\sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 29.36, size = 1921, normalized size = 10.61 \begin {gather*} \text {Too large to display} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^4/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((9/32 - (9*I)/32)*(1 + E^(I*c))*(Sqrt[2] - (1 - I)*E^((I/2)*c) + (16 - 16*I)*E^(((3*I)/2)*c + I*d*x) + (20 +
20*I)*Sqrt[2]*E^((2*I)*c + ((3*I)/2)*d*x) - (34 - 34*I)*E^(((5*I)/2)*c + (2*I)*d*x) - (20 + 20*I)*Sqrt[2]*E^((
3*I)*c + ((5*I)/2)*d*x) + (16 - 16*I)*E^(((7*I)/2)*c + (3*I)*d*x) + (4 + 4*I)*Sqrt[2]*E^((4*I)*c + ((7*I)/2)*d
*x) - (1 - I)*E^(((9*I)/2)*c + (4*I)*d*x) + (8*I)*E^((I/2)*(c + d*x)) - 16*Sqrt[2]*E^(I*(c + d*x)) - (40*I)*E^
(((3*I)/2)*(c + d*x)) + 34*Sqrt[2]*E^((2*I)*(c + d*x)) + (40*I)*E^(((5*I)/2)*(c + d*x)) - 16*Sqrt[2]*E^((3*I)*
(c + d*x)) - (8*I)*E^(((7*I)/2)*(c + d*x)) + Sqrt[2]*E^((4*I)*(c + d*x)) - (4 + 4*I)*Sqrt[2]*E^((I/2)*(2*c + d
*x)))*x*Cos[c/2 + (d*x)/2])/(((-1 - I) + Sqrt[2]*E^((I/2)*c))*(-1 + E^(I*c))*(I - 2*Sqrt[2]*E^((I/2)*(c + d*x)
) - (4*I)*E^(I*(c + d*x)) + 2*Sqrt[2]*E^(((3*I)/2)*(c + d*x)) + I*E^((2*I)*(c + d*x)))^2*Sqrt[a*(1 + Cos[c + d
*x])]) + (((9*I)/8)*ArcTan[(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(-Cos[c/4 +
(d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos[c
+ d*x])]) + (((9*I)/8)*ArcTan[(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4] - Sqrt[2]*Sin[c/4 + (d*x)/4])/(Cos[c/4
+ (d*x)/4] + Sqrt[2]*Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])]*Cos[c/2 + (d*x)/2])/(Sqrt[2]*d*Sqrt[a*(1 + Cos[
c + d*x])]) - (2*Cos[c/2 + (d*x)/2]*Log[Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x])
]) + (2*Cos[c/2 + (d*x)/2]*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(d*Sqrt[a*(1 + Cos[c + d*x])]) + (9*C
os[c/2 + (d*x)/2]*Log[2 - Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(16*Sqrt[2]*d*Sqrt[a*(1 +
Cos[c + d*x])]) + (9*Cos[c/2 + (d*x)/2]*Log[2 + Sqrt[2]*Cos[c/2 + (d*x)/2] - Sqrt[2]*Sin[c/2 + (d*x)/2]])/(16*
Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]) + (((9*I)/4)*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2*Sin[c/2])*Tan[(d*x
)/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2 + (d*x)/2]*Cot[c/2])/(d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[
-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]) - (9*Cos[c/2 + (d*x)/2]*Csc[c/2]*(-(d*x*Cos[c/2]) + 2*Log[Sqrt[2] + 2*Cos[(
d*x)/2]*Sin[c/2] + 2*Cos[c/2]*Sin[(d*x)/2]]*Sin[c/2] + ((4*I)*Sqrt[2]*ArcTan[((2*I)*Cos[c/2] - I*(-Sqrt[2] + 2
*Sin[c/2])*Tan[(d*x)/4])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]^2]]*Cos[c/2])/Sqrt[-2 + 4*Cos[c/2]^2 + 4*Sin[c/2]
^2]))/(4*Sqrt[2]*d*Sqrt[a*(1 + Cos[c + d*x])]*(4*Cos[c/2]^2 + 4*Sin[c/2]^2)) + Cos[c/2 + (d*x)/2]/(6*d*Sqrt[a*
(1 + Cos[c + d*x])]*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^3) - (Cos[c/2 + (d*x)/2]*Sin[(d*x)/2])/(4*d*Sqrt
[a*(1 + Cos[c + d*x])]*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^2) + (Cos[c/2 + (d*x)/2
]*(7*Cos[c/2] - 9*Sin[c/2]))/(8*d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c
/2 + (d*x)/2])) - Cos[c/2 + (d*x)/2]/(6*d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])
^3) - (Cos[c/2 + (d*x)/2]*Sin[(d*x)/2])/(4*d*Sqrt[a*(1 + Cos[c + d*x])]*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)
/2] + Sin[c/2 + (d*x)/2])^2) + (Cos[c/2 + (d*x)/2]*(-7*Cos[c/2] - 9*Sin[c/2]))/(8*d*Sqrt[a*(1 + Cos[c + d*x])]
*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(882\) vs. \(2(152)=304\).
time = 0.21, size = 883, normalized size = 4.88

method result size
default \(\text {Expression too large to display}\) \(883\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+a*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/6*cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(24*a*(-16*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(sin
(1/2*d*x+1/2*c)^2*a)^(1/2)+a))+9*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(
1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))+9*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)
-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^6+(576*2^(1/2)*ln(4/cos(1/2*d*x+1/2*
c)*(a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+a))*a+168*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-324*ln(-4/
(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*
a))*a-324*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c
)^2*a)^(1/2)+2*a))*a)*sin(1/2*d*x+1/2*c)^4+(-288*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(sin(1/2*d*x+1/2*c)^
2*a)^(1/2)+a))*a-160*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+162*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(
a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a+162*ln(4/(2*cos(1/2*d*x+1/
2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a)*sin(1/2*d*
x+1/2*c)^2+48*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+a))*a+54*a^(1/2)*2^(1/2)
*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-27*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*
2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a-27*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1
/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a)/a^(3/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*cos(
1/2*d*x+1/2*c)+2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 263, normalized size = 1.45 \begin {gather*} \frac {27 \, {\left (\cos \left (d x + c\right )^{4} + \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (21 \, \cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 8\right )} \sin \left (d x + c\right ) + \frac {48 \, \sqrt {2} {\left (a \cos \left (d x + c\right )^{4} + a \cos \left (d x + c\right )^{3}\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{96 \, {\left (a d \cos \left (d x + c\right )^{4} + a d \cos \left (d x + c\right )^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/96*(27*(cos(d*x + c)^4 + cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*sqrt(a*cos(d
*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(
d*x + c) + a)*(21*cos(d*x + c)^2 - 2*cos(d*x + c) + 8)*sin(d*x + c) + 48*sqrt(2)*(a*cos(d*x + c)^4 + a*cos(d*x
 + c)^3)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/
(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c)^4 + a*d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{4}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**4/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^4\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^4*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^4*(a + a*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________